Symbols related to set theory

The symbols in this reference may be used anywhere in text.

Set operators

Description
Symbol
Grafstate code
Meaning
Union
\u
A⋃B ≝ {x∣x∈A⋁x∈B}
Intersection
\n
A⋂B ≝ {x∣x∈A⋀x∈B}
Set minus
-
-
A - B ≝ {x∣x∈A⋀x∉B}
Symmetric difference
Δ
\D
A Δ B={x∣x∈A ⊕ x∈B}
= (A - B) ⋃ (B - A)
Cartesian product
\*
A B={(x,y)∣x∈A⋀y∈B}
Power set
℘()
\P()
℘(A)={S∣S ⊆ A}

Statements relating two sets

Description
Symbol
Grafstate code
Meaning
Subset of
\subset
A ⊆ B ⟺ ∀x[x∈A⟶x∈B]
Not a subset of
\!subset
A ⊈ B ⟺ ∃x∈A[x∉B]
Proper subset of
\psubset
A ⊊ B ⟺ A ⊆ B⋀A ≠ B
Superset of
\supset
A ⊇ B ⟺ ∀x[x∈B⟶x∈A]
Not a superset of
\!supset
A ⊉ B ⟺ ∃x∈B[x∉A]
Proper superset of
psupset
A ⊋ B ⟺ A ⊇ B⋀A¬=B

Other symbols related to sets

Description
Symbol
Grafstate code
Contained in
\in
Not contained in
\!in
Contains
\has
Does not contain
\!has
Empty set

{}
\0
{}
Natural numbers
\\GSSYMbtick35;N
Integers
\\GSSYMbtick35;Z
Rational numbers
\\GSSYMbtick35;Q
Real numbers
\\GSSYMbtick35;R
Complex numbers
\\GSSYMbtick35;C
aleph
\aleph
aleph-null
0
\al0
aleph-one
1
\al1